Establishing Proper Pressure Drop for Feedwater Flow Control Valves

Posted on 4th Aug 2019

Feedwater control valves play a critical role in boiler operation. One important parameter of their design is the pressure drop at the rated condition as well as off-design conditions. However, conventional methods used for establishing control valve pressure drop cannot be used at face value without reviewing all plant operating scenarios.

PWR_020114_IC_FWCV_splash

In power plants with drum-type boilers and constant-speed main boiler feed pumps, the feedwater control valve (also referred to as the drum level control valve) provides the means for controlling flow to the boiler. On the other hand, in power plants equipped with variable-speed turbine-driven main boiler feed pumps, the feedwater control valves are usually eliminated from the main circuit but may still be used on the startup circuit with the smaller motor-driven startup feed pump.

In either application, the feedwater control valve is in critical and severe service. As such, it must be sized and designed to provide adequate drum level control and cope with varying drum pressures expected over the range of plant operating conditions. In this regard, one of the important parameters to be evaluated is the control valve pressure drop at the rated condition, as well as during off-design conditions.

The control valve pressure drop needs to be established carefully, as it is a performance debit resulting from increase in horsepower associated with the pressure head of the boiler feed pump. Use of variable-speed drives or turbine drives on the boiler feed pump can avoid this debit by eliminating the control valve altogether. Boilers designed for sliding pressure operation generally utilize variable-speed drives or turbine drives not only to eliminate the control valve penalty but also to take advantage of minimized performance debits at part loads due to lower pump head. The part-load advantage is not available with fixed pressure operation, where boiler pressure remains constant and the pump pressure head must remain high, even at part loads.

This article highlights the various plant operating scenarios that must be considered while evaluating the control valve pressure drop. It also points to the fact that the conventional methods used in industry for establishing control valve pressure drop cannot be used in power plants without reviewing all plant operating scenarios.

Note that the difference between the boiler feed pump head-flow curve and the system resistance curve (Figure 1) provides the basis for the pressure drop available for the drum level control valve. During startup and low-load operation, when drum pressures are low, the valve may experience severe service due to high pressure drop. These conditions could lead to valve cavitation and subsequent destruction of the valve trim along with pipe hammer, which could lead to piping and piping support damage. It is, therefore, essential that the sizing and design of the drum level control valve be such that these problems are avoided. For this purpose, the entire range of service conditions should be provided on the valve data sheet, as this will enable the valve supplier to make the correct valve/trim selection.

PWR_020114_IC_FWCV_figure1
1. Establishing drum level control valve pressure drop. Courtesy: Bechtel Power Corp.

Conventional Methods for Establishing Control Valve Pressure Drop

In general industrial applications, control valve pressure drop has commonly been established by one of the three methods discussed below. However, note that these methods may not be adequate for feedwater control valve applications, which require additional evaluation taking into consideration the high static pressure head involved in pumping feedwater to the boiler.

Traditional Method. This method traces back to the ISA Handbook of Control Valves by J.W. Hutchison, which provides guidance for control valves in a pumped circuit. According to this method, the pressure drop should be 33% of the dynamic loss in the system at rated flow, or 15 psi, whichever is greater. In this context, the dynamic loss in the system is expected to include the pressure drop of the 100% open control valve. Other references allow the control valve pressure drop to be 25% to 50% of the dynamic loss in the system, exclusive of the control valve pressure drop.

Connell Method. In this method, the minimum pressure drop assigned to the control valve is based on pump discharge pressure, increased frictional pressure drop due to maximum flow rate, and base pressure drop to account for the fact that even in the wide open position the control valve generates some pressure drop. The Connell correlation is expressed in the equation below:

PWR_020114_IC_FWCV_equation

where:

dP is differential pressure,

Ps is the pressure at the beginning of the system (pump discharge),

Qd is the design flow rate in the line,

Qn is the normal flow rate in the line,

e is the differential pressure (dP) across the process equipment at normal flow,

r is the dP across only the piping and valves at normal flow, and

B is the base dP for the control valve.

Minimum Control Valve Pressure Drop Method for Pumped Application. In this method, attributed to F.C. Yu, the control valve in a pumped application is assigned a minimum pressure drop at maximum design flow rate and maximum 80% control valve open position (assuming control valve regulating range is 20% to 80% valve open position). The control valve opening is then checked at normal flow to make sure that the opening is not below the minimum 20% open limit. The minimum pressure drop is 10 to 15 psi greater than the pressure drop at valve full-open conditions.

Method Application Examples

Below is the computation used when applying the various methods for determining the assigned control valve pressure drop for the drum level control valve. Note that the values are not exactly comparative because each method uses parameters that are not common to all three methods.

Traditional Method:

Connell Method:

Minimum Control Valve Pressure Drop Method for Pumped Application:

Above Selected Article is linked from below Website:

https://www.powermag.com/establishing-proper-pressure-drop-for-feedwater-flow-control-valves/

No Comments

Leave a Comment