Posted on 5th Feb 2020
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Note: Correlations between ASHRAE and EN standard are approximate. |
|
Gas turbines operating near or on the ocean are classified as being in a coastal, marine, or offshore environment. The gas turbine is in a coastal environment when the gas turbine is installed on land and within 10 miles (16 km) of the ocean. At distances from approximately 8 to 12 miles (13 to 19 km) from the shoreline, the salt concentration in the air drops to natural background levels for an environment far away from the ocean [23]. The offshore and marine environments are defined as being in the middle of the ocean. The gas turbine is considered in an offshore environment when it is located at least 100 ft (30.5 m) off of the ocean surface. Gas turbines located below 100 ft (30.5 m) are considered to be in a marine environment.
The primary contaminant that is a concern in the coastal, marine, and offshore environments is salt. Salt as previously discussed can lead to fouling and corrosion. Salt is prevalent in these environments due to the sea water. In coastal environments, it is present as dry contaminants (areas with lower humidity), sticky contaminants (humidity between 40 and 70 percent), or as liquid aerosols (humidity greater than 70 percent) [2]. In the offshore environment, salt is usually present in the sticky particle or liquid state. The marine environment (closest to the ocean surface) has salt present in the liquid aerosol state. In all these environments, the amount of salt depends on the wind speed and direction and the elevation of the gas turbine.
Coastal environments also have land-based contaminants that must be removed from the air. These will be discussed in more detail below. Offshore environments have industrial contaminants such as exhaust fumes, by-products of maintenance (such as dust from grit blasting), and unburned hydrocarbons from flares. Many of these particles are on the submicron size; therefore, high efficiency filtration is often employed. The marine environment most often does not have as many additional contaminants to remove from the air. However, when a ship is near a coast, land-based contaminants may be present. In addition, icing in colder environments is often a concern. Icing can also be an issue in offshore and coastal environments.
The filtration system for a coastal environment is similar to that of a land-based environment, which will be discussed later. However, in coastal environment it is important to have mist eliminators for water and salt water removal and high efficiency filtration for salt removal. The filtration system in an offshore environment is similar to a coastal filtration system but may have increased air velocity due to size and weight limitations. The filtration system on a marine vessel is most commonly comprised of a vane-coalescer-vane system. This system has two vane axial separators with a coalescer in between them. This system is a high velocity system that is designed for removing salt water. It has limited solid particle removal capability [2, 23, 25, 26].
The land-based environment is very diverse. It can be classified in many different ways depending on weather patterns, vegetation, and local emission sources. Several land-based environments are described below.
The desert is classified as an area with a dry and hot climate. Large amount of dust is present and there is little vegetation. Sand storms are common and can quickly load filters to their maximum dust holding capacity. The main regions of the world which can be characterized by desert like environments are across the Sahara desert in Africa, the Middle East, and parts of Asia. However, small localized areas with high dust concentrations do exist. These can include gas turbines installed near quarries, dried lakebeds, loess, industrial areas, dirt tracks, dry agricultural land, and construction sites. There are three typical conditions that exist in the desert: clean air, dust haze, and sand storms. Dust is the main contaminant in the desert for these conditions. This can be sand or other fined grained material such as desert pavement. Desert pavement is the layer of large stones left on the floor of the desert. While these stones are not harmful in their solid state, they can easily be broken by human or animal traffic and crumbled into fine particles. These particles can range from large (500 μm) to very fine (submicron size). Due to the lack of vegetation and protection of the ground dust from the wind, more dust can be lofted into the air than in other environments. This leads to a high concentration of dust.
The filtration systems in deserts are usually solely designed for dust removal. However, some desert locations experience periods of dense fog and high humidity. This is especially true for deserts near a coastal region. The moisture can collect on the surface of cartridge filters on self-cleaning systems and cause the dirt to form a cake on the filter. This cake of dust can significantly reduce the effectiveness of filtration and pulse cleaning. If fog and high humidity are present at the desert-type site, then this should be considered for the filtration system.
Dust loads in the desert can range from mild (low wind) to fairly high (dust storms). Conventional non-self-cleaning filtration systems can quickly become loaded and require frequent filter change outs. Also, high pressure losses can trigger a shutdown if they become excessive. In order to avoid the constant maintenance and labor required for changing filters out, a self-cleaning system is needed. Filtration systems without self-cleaning filters have proven to be more expensive due to the labor cost and maintenance required with filter replacements [26, 27].
The arctic environment is characterized by freezing weather (below 32°F (0°C)) for an extended period of time. The location will not necessarily be classified as arctic for the entire year. It will have other land-based contaminants, which must be considered. However, the arctic seasons of the year will influence the design of the inlet filtration system.
Ice build-up is the primary concern in this environment during the cold months. Ice can form from the ingestion of snow or freezing rain and also due to the depression or cool humid air in the inlet system. Placement of the inlet of the filtration system, weather hoods with large openings (referred to as snow hoods), and self-cleaning filters is often adequate to protect against the ingestion of snow and freezing rain. To prevent the formation of ice from the depression of cool humid air requires an anti-icing system such as recirculated exhaust air or a compressor bleed.
In addition to ice, warm season contaminants must be considered for the design of the inlet filtration system. These contaminants can be similar to any of the other land-based environments discussed in this section [26].
Tropical areas are characterized by hot climate, high humidity, monsoons, high winds, and insect swarms. Due to the extensive vegetation, there is not much erosion concern. It is considered a low-dust environment. The area has little seasonal variation with the exceptions of periods of intense rainfall. Typhoons, dust, insects, and the remoteness of systems in the tropics should be considered when choosing the correct system.
The main contaminants in this area are water (from rain), insects, and salt (if the location is near a shoreline). Dust is minimal, since the overgrown vegetation protects the ground dust from winds. Of course, there are always exceptions to this. If the gas turbine is installed in a construction site, then the dust levels will be higher than normal. Also, unpaved roads can contribute to the dust in the environment. Pollen can be an issue. Salt will be present in aerosol form due to the high humidity and moisture present.
The filtration systems for tropical environments are specifically built to handle large amounts of rain. Weather hoods are used as a primary defense. Extended area insect screens are used for blocking insects. These screens have a lower air velocity (in the range of 260 ft/min (1.3 m/s)), which allows the insects to move away from the screens. This prevents obstruction of the inlet air flow. This is followed by a mix of prefilters, coalescers, and vane separators. The water removal system must be designed in order to handle the highest expected water ingestion and prevent corrosion. If this is not done, then water will be able to travel farther downstream in the inlet filtration system. Any prefilters or high efficiency filters used should be selected to prevent water travel through the filter. If water is allowed to penetrate the filter, then it can absorb the capture soluble contaminants and transport them through the filter into the gas turbine. This can have detrimental effects if salt is being removed from the air stream. These filters should also be selected for the expected contaminants such as pollen and road dust [26, 28].
The rural countryside is a diverse environment. Depending upon where the gas turbine is located in this environment, it can be subjected to hot, dry climate, rain, snow, and fog throughout the year. The majority of the year there is a nonerosive environment with low dust concentrations in the range of 0.02 to 0.1 ppm (0.01 to 0.05 grains per 1000 ft3 (28.3 m3)). The area can be near a local forest or be near agricultural activities.
The contaminants in this environment vary depending on the season. Throughout the year, insects and airborne particulate will need to be filtered. If the gas turbine is installed near an agricultural area, then during plowing and harvesting season, the concentration of dust will increase. During plowing, insecticides and fertilizers will be airborne. At harvest, the particles or grains from cutting plants down will be lofted into the air. The particles that travel to the gas turbine are relatively small (less than 10 μm), unless strong winds are present to carry large particles. Gas turbines near forests may not have as high dust concentration. The foliage of the forest will protect the ground dust from being lifted by the wind. With the change in season, snow, rain, fog, pollen, airborne seeds, and insects will be present. This climate has one of the most diverse filtration requirements as compared to other environments.
These systems are typically comprised of three stages: weather hood, prefilter, and high-efficiency filter. The weather hood protects the filters farther downstream from rain and snow. They also minimize the amount of dust entering the filtration system. Insect screens are used, especially if insects are present in swarms during parts of the year. The prefilter is used to remove any erosive dust present in the air. The prefilter also protects the high efficiency filter from being overloaded too quickly. The high efficiency filter removes the smaller particles. If the gas turbine is installed near an agricultural area, the filter engineer may consider a self-cleaning system. This type of system would be beneficial during plowing or harvest season when the air has a high erosive dust concentration. A self-cleaning system can also be beneficial in an area with a dry, cold climate during the winter season. It can effectively prevent ice from forming on the filter elements and influencing the gas turbine operation [26].
Large cities can experience all the types of gas turbine degradation: corrosion, erosion, and fouling. Contaminants from many different sources ensure the requirement of a multistaged filtration system.
All different types of weather can occur throughout the year in a large city. The amount of contaminants varies throughout the season as discussed above for the rural countryside. One example is salt or grit that is laid down on icy roads during the winter. The city also has smog and pollution. These can also be seen in the countryside due to high winds, but are much more concentrated in the city. Some other considerations for large cities are noise issues and vandals.
The system has a multistage approach with specific filters installed for the local contaminants. Weather hoods are used the majority of the time due to the changing weather conditions with seasons. This protects the system from rain, snow, and windy conditions. The filtration system is composed of a prefilter and a high-efficiency filter. The prefilter removes the larger erosive particles. The high-efficiency filter is typically of the non-self-cleaning type with rectangular filters or cartridges filters. The self-cleaning systems are not used due to the sticky aerosols present in the air. If freezing conditions are expected, then an anti-icing system is included. Urban/industrial areas typically do not have airborne particulate concentrations that warrant the use of self-cleaning filtration systems, but self-cleaning systems are used successfully in these areas, when these are in regions of heavy snow and minimal sticky contaminants [26].
Many gas turbines are installed in heavy industrial areas. These locations can be in any of the environments discussed above, but they have additional concerns. There are several emission sources in an industrial location, which contribute to the contaminants that must filtered out.
The most prevalent contaminant in industrial areas is contaminants from exhaust stacks. These can be in the form of particles, gases, and aerosols. Many of the particles emitted by the exhaust stack are in the submicron size range. These size particles are difficult to filter and can collect on compressor blades and cause fouling. The gases emitted in the exhaust can contain corrosive chemicals. For example, exhaust gases from fossil fuel plants has SOx, which contains sulfur. Sulfur is one of the corrosive components that can lead to hot corrosion in the turbine section. Gas cannot be removed by mechanical filtration. Aerosols also present a challenge. These are typically on the submicron size and difficult to filter. Many of these aerosols are sticky, and when they are not removed by the filters, they stick to compressor blades, nozzles, and other surfaces. One example of this already mentioned in this guideline is the compressor blade fouling due to oil vapors.
Industrial locations can also experience contaminants that are not typically seen, unless near a localized source. Some examples of these are dust from mining operations, sawmills, foundries, and other industrial facilities. Also, if the gas turbine is near a petrochemical plant, the air may be contaminated with specific chemicals. These chemicals could be harmless, but they also could have corrosive properties.
One commonality between all industrial locations is that the inlet of the filtration system is subjected to the local plant emissions. This condition typically requires a more robust high-efficiency filtration system to remove fine particles that are entrained in the air. One way to reduce the amount of emissions that are ingested into the inlet is to direct the inlet air flow away from these emission sources. Several recommendations in regards to the inlet placement and site layout are discussed in a later section. Even so, there are still some emissions that are ingested by the turbine. Additional filter elements should be included in the filtration system to address these emission particles. For example, if the industrial location is near an open coal storage site, then the gas turbine should have prefilters and high-efficiency filters to remove the coal dust that is in the air.
One contaminant that is often in the air at industrial locations is sticky aerosols. These aerosols can be from oil vapors from lubrication systems or unburned hydrocarbons emitted from exhaust stacks. These aerosols are very difficult to remove from the air and often lead to blade fouling. High-efficiency filters should be used to minimize the aerosol’s effect on the gas turbine, but a compressor washing scheme is needed to keep the compressor blades clean and to minimize the effects of fouling on gas turbine performance [26].
In many of the applications discussed above, temporary or seasonal conditions are mentioned. As gas turbines become more advanced and more sensitive to the inlet air quality, it becomes more important to address these conditions.
In order to address seasonal changes, the expected conditions must first be defined. During the design phase, the air quality at the site where the gas turbine is going to be installed should be monitored for at least 1 year. This will provide the filter engineer with information about which contaminants they can expect in each season. Also, the filter engineer should map out any potential construction, agricultural, or dust-generating projects that will occur in the first 5 to 10 years of the life of the gas turbine. Combining the expected contaminants will allow the filter engineer to develop a more holistic approach to their inlet filtration.
Currently, the majority of the filtration systems installed have a fixed filtration system. The number of stages, types of filters, and level of filtration remain constant throughout the operation. If the future site for the gas turbine is expected to have high variability in the type of contaminants experienced (temporary or seasonal), the filter engineer may consider a filtration system which allows the use of many different filters. This would then allow the filtration system to be adapted to the current conditions.
The layout of the site where the gas turbine is installed can have a significant effect on the type and amount of contaminants that need to be removed from the inlet air. This has been mentioned in several of the environmental-type discussions above but is summarized here for completeness. Listed below are general recommendations. Gas turbine manufacturers may have their own set of guidelines for placing the gas turbine [29].(i)When installing other combustion-type equipment, such as a diesel engine, near the gas turbine, the exhaust of the equipment should be directed away from the gas turbine inlet. This reduces the possibility of the exhaust gas entering the gas turbine inlet system. This exhaust can contain unburned hydrocarbons or corrosive gases.(ii)Cooling towers can be a major source of aerosol drift. Cooling towers are open to the atmosphere and, therefore, release aerosols into the air due to agitation from cross winds and the flow of the water down the tower. The water in the cooling tower also contains water treatment chemicals that could be detrimental to the gas turbine. The drift of aerosols from a cooling tower is confined within a few hundred feet. If possible, the gas turbine inlet should be positioned away from cooling towers and placed upstream of the prevailing wind direction to minimize the aerosol drift. CFD can be a useful tool to model how the wind will carry aerosols over to the gas turbine inlet. This will help the filter engineer to properly place the gas turbine to minimize cooling tower drift effects.(iii)Pressure relief valves are installed on many gas lines and equipment to protect the equipment in case of an over pressurization event. The vents to these relief devices should be directed away from the gas turbine inlet. Release of any hydrocarbon could result in high concentration ingestion at the filtration system. The filters at the inlet to the gas turbine do not remove gas phase contaminants.(iv)Piping connections on gas, fluid, or steam lines will generally leak after some time. The leaks at these connections can impact the filtration system. Piping should be routed away from the inlet in order to prevent this influence.(v)Lube oil vents should be directed away from the inlet to prevent oil vapor ingestion.(vi)The exhaust of the gas turbine should be directed away from the inlet of the gas turbine. Carbon smoke and hydrocarbon fumes released at the exhaust could lead to accelerated fouling of the compressor blades.(vii)The gas turbine inlet system should not be directed toward or installed near any exhaust stacks. These exhaust stacks release chemical exhaust and unburned hydrocarbons, which can lead to compressor fouling and corrosion.(viii)Avoid placing the inlet near gravel or dirt roads. The dust thrown into the air from vehicle traffic and wind can be carried into the inlet of the gas turbine.(a)If the gas turbine is operated during construction activities, consider adding more robust filters to remove the excess dirt that will be ingested.(ix)Direct the inlet away from any open storage of coal, salt, or other grainy particles. The wind can carry the smaller grains from the storage area into the inlet of the gas turbine.
As discussed previously, there are several different types of environments where a gas turbine can operate. Also, there are many possible local, seasonal, and temporary contaminants that can be present. Therefore, each gas turbine installation site has a unique make-up of contaminants. When selecting the inlet filtration system, this make-up should be determined. This includes determining what contaminants and how much are present at the site. Once this information is known, the types of filters needed and filtration efficiency required can be established. Below is a list of items that should be considered when evaluating the site where the gas turbine will be installed [9, 29]:(i)environment where the gas turbine will be installed: Coastal, marine, offshore, desert, arctic, tropical, industrial area, rural countryside, or large city,(ii)contaminants present in that environment,(iii)local contaminants (mining operating, foundries, agricultural activities, inland salt lakes, etc.)(iv)temporary contaminants (construction activity, dirt roads, etc.),(v)future emission sources (new industrial facility or residential development),(vi)site layout (vents and exhaust, cooling tower drift, open storage of grainy particles, etc.),(vii)weather patterns.
When selecting a filtration system, the filter engineer is burdened with deciding the level of quality they want their system to achieve. This includes the efficiency of filtration, the particle size to be filtered, the amount of maintenance that will be needed to maintain the filtration system, what rate of degradation is acceptable for the gas turbine, the required availability and reliability of the gas turbine, what type of washing scheme will be used (online, offline, or a combination of both), and cost of the filtration system. The cost impact of each of the items mentioned can be quantified. A Life Cycle Cost (LCC) analysis provides a convenient means to compare different filtration system options quantitatively.
This section covers the inputs that should be considered for the LCC analysis for a filtration system. It also provides methods to calculate the cost impact for each input. This type of analysis focuses on the overall or lifetime cost of a system. It is a tool that estimates the total cost to purchase, install, operate, maintain, and dispose of equipment. This analysis can assist in determining the best design options, which will minimize the overall cost of a system.
It is important to include initial cost in the analysis, but it is just as important to include operation and maintenances cost. The operating and maintenance cost over the life of a piece of equipment can have a more significant effect, especially if a poorly designed system is chosen. An LCC analysis can help to determine which system configuration can minimize lifetime costs. Some of the costs that are typically considered are shown below. Examples of how this would apply to filtration systems are provided in parentheses:(i)initial cost (filters, filtration system, spares filters, instrumentation),(ii)installing and commissioning costs (labor, cost of installation equipment (such as cranes), shipping costs),(iii)energy costs (pulse system for self-cleaning filters),(iv)operating costs (labor, inspections),(v)maintenance (replacing filters, repairing system, labor for maintenance),(vi)downtime (replace filters, complete offline water washes, anything outside of normal shutdowns for other maintenance),(vii)gas turbine effects (degradation, performance loss),(viii)decommissioning and disposal (disposal of filters).
In an LCC analysis, estimates are provided for each cost component of the system. An inflation rate can be applied to the costs which will occur later in the life of a system (such as 10 years from the installed date). Once these costs are established, they are brought back to present value using (2). The Net Present Value (NPV) term represents the value of the cost in present terms. π΄ is the value of the cost in the year it occurs. The term π is the discount rate and π is the year the cost occurs in. If there is a price increase (inflation) or decrease, then this can be accounted for by using (3). The term π is the increase or decrease in price:NPV=π΄(1+π)−π,(2)NPV=π΄(1+(π−π))−π.(3)
Projected costs over the lifetime of the system cannot be combined directly when calculating the LCC, because the funds spent at different times have different values to the investor. The discount rate, π, is used to bring the costs to present terms, where they can be directly added together, and is defined as the rate of return that is used to compare expenditures at different points in times. For example, the investor would be equally satisfied to have one amount received earlier and the other amount received later.
If a cost occurs yearly, the NPV of the total recurring costs can be calculated with (4). If inflation or price escalation is considered in the analysis, the NPV of the total recurring cost can be calculated with (5):π΄NPV=π[](1−1+π−πξ),(4)NPV=π΄1+πξξ΅ξ1−π1−1+πξ1+ππξΆ.(5)The NPVs must be determined for each cost. Then the cost will be added together to obtain the total NPV or LCC cost [30].
In an LCC analysis for a gas turbine inlet filtration, there are six main parameters: purchase price/initial cost, maintenance cost, availability/reliability of the gas turbine, gas turbine degradation and compressor washing, pressure loss, and failures of the filtration system or gas turbine due to inlet air quality [29].
The purchase price occurs in the first year of the LCC analysis. It is the cost to purchase and install the inlet filtration system. An estimate for this value can be obtained from the filter vendor or gas turbine manufacturer.
The maintenance cost includes the cost of filter replacement and disposal and any maintenance to auxiliary systems for the inlet filtration system. It is a recurring cost that should be included in each year that the cost is acquired. This cost can be calculated based on estimated filter change out frequencies, cost of filters from vendors, labor cost for maintenance, and cost of downtime to replace filters.
The availability/reliability of a gas turbine impacts the cost due to the lost production as a result of the nonavailability of the gas turbine. Filter exchanges requiring the shutdown of the engine, as well as on-crank water washing negatively, impacts the availability of the engine. On the other hand, if the engine is not used 100 percent of the time, for example, because it is a standby or peaking unit, the cost of degradation has to be adjusted accordingly.
Gas turbine degradation is perhaps the most important cost in the analysis. This is often the cost which drives the analysis to favor one filtration system option over another. The cost of gas turbine degradation is calculated based on the reduced power output and increased heat rate due to inlet air quality. The rate of degradation due to inlet air quality is difficult to calculate and is best found from past operating history. There are several degradation models discussed in the literature, which can provide estimates of the expected degradation rate. A few examples are the models presented by Zaba and Lombardi [31], Kurz and Brun [32], and Meher-Homji et al. [33].
Once the degradation rate is calculated the lost profit due to reduced gas turbine output can be calculated. If the gas turbine is operating at full load, then it is expected that the fuel cost will decrease due to the lower power output. For part load operations, it is expected that the fuel cost will go up since the engine will be operated at the desired power output. The change in fuel cost should be calculated based on the change in heat rate and operational philosophy and be included in the analysis. This cost should be included in each year of the analysis.
Compressor washing is often performed in a gas turbine in order to minimize the effects fouling on the performance of the gas turbine. The use of compressor washing may reduce the rate of degradation in the gas turbine. However, the most effective type of washing is on-crank washing, which requires that the engine is shut down. This results in a lower availability of the engine, and, associated with this, may cause the cost of lost production.
The pressure loss across the inlet filtration system can also have a significant effect on the cost of the inlet filtration system. An increase in the pressure loss across the filtration system leads to reduced power output from the gas turbine and an increased heat rate. The cost of these effects should be included yearly in the LCC analysis.
The last cost is any cost associated with a failure or event that occurs due to the inlet filtration system or inlet air quality. This could be a failure of a filter material, which requires shutdown for replacement or a failure of a gas turbine blade which occurred due to corrosion from poor inlet air quality. These costs are often included based on past experience with the gas turbine or other filtration systems.
In summary, the selection and operation of an inlet filtration system is highly dependent on the environment where the gas turbine is operating. The contaminant present in the ambient air will dictate the type filters that are used. It is important to quantify what type and size of contaminants are present in order to correctly select the filters to be used. Temporary and seasonal variations must also be considered for the inlet filtration system. A life cycle cost analysis provides a convenient method to quantify and compare various filtration system options such that the optimal system can be selected.
π: | Escalation rate |
π: | Discount rate |
π: | Year cost occurs |
π΄: | Cost in present value |
EPA: | Efficient particulate air filter |
HEPA: | High efficiency particulate air filter |
IGV: | Inlet guide vanes |
MERV: | Minimum efficiency reporting value |
MPPS: | Most penetrating particle size |
NPV: | Net present value |
ULPA: | Ultra low particulate air filter |
π: | Weight, volume, area, or particle number |
π: | Efficiency. |
Copyright © 2012 Melissa Wilcox et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.